
1

EBV & Infineon

Security Deep Dive –
IoT Threats & Countermeasures

prepared by
Uros Mali, Director Segment Smart Sensing & Control

October 2023

2

Security Consultants & Hackers Methodology

• Finding open doors into the system

• Understanding the application communication flow

• Disrupting the hardware and reversing the software

Threats & Countermeasures

• Extracting the software

• Modifying and running the software

• Stealing secrets

• Spoofing the device identity

IoT Security Threats &
Countermeasures

3

Security Consultants & Hackers Methodology

4

Security Consultants & Hackers Methodology

Stage 1 Stage 2 Stage 3

Day
7

Day
1

Day
3

Day
30+

Both share a similar gradual strategy to evaluate an IoT solution:
• First they try to identify any easy access to the device through “open doors” (Stage 1).

• Then they try to understand the application communication flow (Stage 2).

• Finally they try to disrupt the hardware and/or reverse engineer the software (Stage 3).

Though the evaluation goals are obviously different…
• Security consulting firms are paid to evaluate a solution robustness for a period of time defined by

contract, then they typically issue a detailed test report to the customer with security recommendations.

• Hackers stop investigations as soon as device access (being full or limited) can be used to generate
revenue. They have NO time limit.

5

Finding Open Doors into the IoT Device

Stage 1 Stage 2 Stage 3

Day
7

Day
1

Day
3

Day
30+

Search online for known exploits about device software or hardware.

Check for open or obvious administrator access (root).

Use brute force attack to break weak administrator credentials using dictionary.

Verify if JTAG port is still accessible (open).

6

Stage 1: Brute Force Attack to Get Device Access 1/3

Brute Force attack is the simplest method to
gain access to a device or server (or anything
that is password protected).

It tries various combinations of usernames and
passwords again and again until it gets in.
Dictionary can be used to increase success
rate.

Scripting languages such as Python are good
options to implement brute force attack for
embedded targets.

7

Stage 1: Trying to Access JTAG 2/3

JTAG is a common hardware interface that provides your computer
with a way to communicate directly with the MCU.

OpenOCD is a free software working on top of JTAG, which enables
on-chip debugging, in-system programming and testing. It is
supported by most modern embedded target.

Inspecting the device PCB can give valuable information:
• MCU reference, memory type, connectivity modules & part numbers.

• PCB revision.

• Headers and test points that might be used as main processor output or
programming interface (JTAG).

Hardware tool such as JTAGULATOR can come in handy for
identifying JTAG or UART ports. The tool allows to connect all the
pins of a header and automatically walk through and test all possible
pinout combinations to identify JTAG or UART.

8

Stage 1: Trying to Access JTAG 3/3

Once JTAG pinout is found, any JTAG probe such as UM232H can be
used to connect the target MCU to a laptop.

From the laptop, run openocd and if JTAG port is open, a full access
to the device is granted, allowing tools such as gdb to access memory
and extract firmware:

9

Understanding the Application Communication Flow

Stage 1 Stage 2 Stage 3

Day
7

Day
1

Day
3

Day
30+

Search for debug UART interface that could reveal useful information.

Analyze network communication.

IoT configuration tools such as Android apps are usually not secured and
easy to decompile and analyze.

Use man in the middle attack with spy router to replay TCP transaction
to try to take control of the IoT device.

Use replay attack probing any data bus, especially between MCU and
connectivity module (Wi-Fi, BLE, NB-IoT, etc).

10

Stage 2: Analyze Network Communications 1/5

Application

Cloud “Connectors” such as

MQTT, COAP, HTTP, …

SSL/TLS Security

TCP/IP Stack

Wi-Fi / BLE RadioHardware

Services

Things protocols such as

MQTT, COAP, HTTP, …

Storage

Android .apk

WLANInternet

BLE

11

Stage 2: Analyze Network Communications 2/5

SHODAN WIRESHARK

Obtain information about
a public IP address.

Free open source packet
analyzer.

12

Stage 2: Analyze Network Communications 3/5

AirPcap USB-based adapters capture 802.11
wireless traffic for analysis by Wireshark.

Wireshark can then be used to listen to the air
traffic without modifying the initial network setup.
It can also decipher WPA (1, 2 or 3) encrypted
frames if configured with the right credentials.

Much information can be exposed:
• Overall IP socket topology of the IoT device.

• Protocol being used (plain TCP, TLS, etc).

• Successfully triggering the device OTA process can expose
both remote OTA server IP address with file path along with
the OTA firmware itself.

13

Stage 2: Analyze Android Mobile App 4/5

Dex2jar is a set of tools to work with android .dex and java .class files:
• Read/write the Dalvik Executable (.dex) file.

• Convert .dex file to .class files (zipped as jar).

• Disassemble dex to smali files and assemble dex from smali files.

JD-GUI is a standalone graphical utility that displays Java source codes of .class files. It
make it possible to browse the reconstructed source code with the JD-GUI for instant
access to methods and fields. It makes it very easy to navigate through the code.

DEX2JAR

JD-GUI

ADB Tool

ADB Tool is a development tool that facilitates
communication between an Android device and
a personal computer.
It is the “Swiss-army knife” of Android
development. Most app can give valuable
information just by looking at their debug output!

14

Stage 2: Probe Data Bus and Replay Attack 5/5

Probing communication data bus is easy to do and the required
hardware is quite inexpensive.

SPI, I2C and UART data bus are frequently used in embedded device
to communicate with external flash memories, connectivity modules,
etc...
Some devices are particularly vulnerable to replay attack on such
data bus:

• AT command based connectivity modules (Wi-Fi, BLE, CATM1) where data is visible
in clear.

• Connectivity modules that embed a TLS stack, as data on the bus are very likely to
be clear text.

• Any device that does not include bus protection (such counters with encryption) can
be easily susceptible to a replay attack.

15

Disrupting the Hardware and Reversing the Software

Stage 1 Stage 2 Stage 3

Day
7

Day
1

Day
3

Day
30+

Use side channel attack to guess input credentials, bypass
firmware instructions or to reveal TLS session keys and expose
data communication with remote server.

Get access to the flash memory content (mostly a matter of
time). Use code injection attack, relocate external flash to
test board to dump memory content or decapsulate MCU to
read internal flash.

Disassemble firmware and perform software reversing:
• Check for unsafe C library function calls to enable code injection attack.

• Understand boot process to bypass any security when reassembling a pirate
firmware.

• Understand firmware update and OTA to enable large scale attack.

• Further reverse firmware to alter original program execution flow.

• Reveal weakly encrypted keys embedded in the firmware (mostly a matter of
time).

16

Stage 3: Timing Attack to Find Credentials with Power Analysis 1/9

Timing attack is a side-channel attack in which the attacker attempts to compromise a system
by analyzing the time taken to execute an algorithm. Every logical operation in a computer takes
time to execute, and the time can differ based on the input; with precise measurements of the time
for each operation, an attacker can work backwards to the input.

Information can leak from a system through measurement of the time it takes to respond to certain
queries. How much this information can help an attacker depends on many variables:
cryptographic system design, the CPU running the system, the algorithms used, assorted
implementation details, timing attack countermeasures, the accuracy of the timing measurements,
etc.

Timing attacks are often overlooked in the design phase because they are so dependent on the
implementation and can be introduced inadvertently with compiler optimizations. Avoidance of
timing attacks involves design of constant-time functions and careful testing of the final
executable code.

17

Stage 3: Glitch Injection to Bypass Instructions in Core Pipeline 2/9

Glitch or Voltage fault injection is a powerful active
side channel attack that modifies the execution-flow of
a device by creating disturbances on the power supply
line.

The attack typically aims at skipping security checks
or generating side-channels that gradually leak
sensitive data, including the firmware code.

The attack typically starts at a trigger (for instance
fetching the firmware from an external flash), then after
an “estimated” delay a voltage glitch is injected, which
can bypass some security test instruction in the MCU
core pipeline.

A successful attack can take time as it is a matter of try
and luck.

18

Stage 3: Dumping External Flash Memory 3/9

Going further into hacking an IoT device requires accessing the device firmware.

MCU that requires external flash memory are at risk as the flash content can be
easily retrieved using tools such as Flashrom.

Flashrom

Binwalk is another tool used for analyzing binary
files for embedded files and executable code. It is
mostly used to extract the content of firmware
images.

Binwalk can also search for string in the binary files.

19

Stage 3: Dumping Internal Flash Memory (Chip Decapsulation) 4/9

Decapping (decapsulation) or delidding of an integrated circuit is the
process of removing the protective cover of a microchip. This process is
typically done in order to debug a manufacturing problem with the chip, or
possibly to extract firmware from the device.

Decapping is usually carried out by chemical etching of the covering,
laser cutting, or mechanical removal of the cover.

Plenty of labs offer such services online and the cost of extracting a
firmware is not expensive (~2000 USD).

• Semi-invasive attacks:

• Decapping package.

• Infrared light/photon emission analysis of backside to find location for attack.

• Use laser to flip bits (re-enable JTAG) and break crypto.

• Fully-invasive attacks:

• Much effort but 100% success rate.

• Modify chip with FIB (Focused Ion Beam).

• Microprobing.

• Linear code extraction (LCE).

20

Stage 3: Disassemble the Software and Reverse Engineering 5/9

Don’t mess with the terminology:
• Disassemblers reverse binaries into assembly language.

• Decompilers reverse binaries into higher-level languages, like C or C++.

• Debuggers allow to view and change the state of a running program.

• Hex Editors allow to view and edit the contents of a binary.

Binary reversing tools:
• IDA Pro.

• Radare2.

• Binary Ninja.

Firmware analysis tools:
• firmwalker (with binwalk, cpu_rec).

• firmware-analysis-toolkit.

• FACT (Firmware Analysis and Comparison Tool).
IDA Pro Radare2 Binary Ninja

21

Stage 3: Understand Software Flow & Extract Embedded Keys 6/9

22

Stage 3: Bypassing Security Verification (Secure Boot) 7/9

Secure Boot is a technology where the system firmware checks
that the system boot loader is signed with a cryptographic key, thus
authenticating the system boot loader.

Disassembling the boot ROM code reveals that the function
ets_secure_boot_check_finish performs the crypto verification
and then bnei instruction (0x400075B7) performs the branch to
jump on the firmware image or reset the system.

Glitching bnei instruction can
bypass system verification!

23

Stage 3: Code Injection for Potential Large-Scale Attacks 8/9

Code injection technique such as buffer overflow (or
stack smashing) rely on weak software implementation
where a stack frame gets corrupted by overflowing an
input buffer during a function call. Vulnerable
implementations typically don’t perform boundary check
on the input data.

In such case, overflowing the input buffer can overwrite
the stack frame of the current function (with its return
address) thus allowing for malicious code injection.

Buffer overflow attacks are typically used to inject shell
code to get a privileged access (root) in the device.

This exploit can be used in many ways to inject code to
negatively affect device quality of service, compromise
sensitive user information, turn the device into a botnet,
etc.

24

Stage 3: Extract AES Keys from Memory Coredump 9/9

Free Tools such as findaes can identify and extract AES strings from a coredump file.

Searches for AES keys by searching for their key schedules. It can find 128-, 192-, and 256-
bit keys, such as those used by TrueCrypt, BitLocker or TLS stacks. Originally intended for
memory images but also work with any arbitrary data.

Download link:
https://sourceforge.net/projects/findaes

https://sourceforge.net/projects/findaes/

25

Day
3

Stage 3Stage 1 Stage 2

IoT Devices Need to Address Multiple Threats!

NVM (firmware)

• Extract

• Modify

• Re-flash

NVM
Embedded

Processor
Cloud

Bus

• Monitor

• Man-in-the-middle

Active Side Channel

• Glitch attack

• Decapping
Network Attack

• Protocol attack

• Attack bad implementation

• Code injection attack

Passive Side Channel

• Power analysis (DPA)

• Electromagnetic analysis

Open Port

• JTAG

• UART

• Default password

You are terminated

Day
7

Day
1

Day
30+

26

Security Countermeasures

27

OPTIGA™ Family – Embedded Security Solutions

OPTIGA™
TPM SLM/SLI

OPTIGA™
Trust B

OPTIGA™
Trust X

Functionality

TCG standard

Automotive/industrial

qualified
Authentication

* Based on certified HW

Security Level CC EAL 4+Basic CC EAL 6+ *

Type of

Host System
Embedded Linux

Windows / Linux

MCU without OS / proprietary OS / RTOS

Interface SWI I2C SPI

System

integration ✓ ✓

Connected

device security

Cryptography
Private key stored

in secure HW

ECC131 ECC384
ECC256

RSA2K

NVM (Data) 6 kByte64 Byte 10 kByte

OPTIGA™
Trust M

CC EAL 6+*

I2C

✓

Connected

device security -

Toolbox based

ECC384

RSA2K

10 kByte

OPTIGA™
Connect

CC EAL 5+

eSIM

Multiple MNO-

profiles

ECC, RSA

ISO7816

✓

OPTIGA™
TPM SLB

TCG standard

CC EAL 4+

I2C, SPI, LPC

ECC256

RSA2K

6 kByte

OPTIGA™
Trust M v3

CC EAL 6+ *

I2C

✓

Enhanced Trust M

feature-set

ECC521

RSA2K

10 kByte

Platform

vendor
Platform

vendor

28

OPTIGA™ Trust M - SLS 32AIA010MH/S/K/L

Key Features

• High-end security controller

• Common Criteria Certified EAL6+ (high) hardware

• Turnkey solution

• Up to 10kB user memory

• PG-USON-10-2,-4 package (3 x 3 mm)

• Standard & Extended temperature ranges

• I2C interface with Shielded Connection (encrypted communication)

• Cryptographic support:

• ECC : NIST curves up to P-521, Brainpool r1 curve up to 512,

• RSA® up to 2048,

• AES key up to 256 , HMAC up to SHA512,

• TLS v1.2 PRF and HKDF up to SHA512

• Crypto ToolBox commands for SHA-256, ECC and RSA® Feature,

AES, HMAC and Key derivation

• Configurable device security monitor, 4 Monotonic up counters

• Protected(integrity and confidentiality) update of data, key and

metadata objects

• Hibernate for zero power consumption

• Lifetime for Industrial Automation and Infrastructure is 20 years and

15 years for other Application Profiles

OPTIGA™ Trust M Software Framework on Github - https://github.com/Infineon/optiga-trust-m

https://github.com/Infineon/optiga-trust-m

29

OPTIGA™ Security Functions – Use Cases

Device Authentication

› One-way authentication

› Mutual authentication

Secure Channel

› Encrypted Communication

› Key Generation

User Management

› Password Protection

› User management and keys

Lifecycle Management

› Key Backup and refurbishment

› Personalization and identities

› Supply chain tracking

Secure Updates

› Remote maintenance

› In-field flexibility and reaction

System integrity

› Secure Boot

› Remote platform verification

30

Day
3

Stage 3Stage 1 Stage 2

IoT Devices Need to Address Multiple Threats!

NVM (firmware)

• Extract

• Modify

• Re-flash

NVM
Embedded

Processor
Cloud

Bus

• Monitor

• Man-in-the-middle

Active Side Channel

• Glitch attack

• Decapping
Network Attack

• Protocol attack

• Attack bad implementation

• Code injection attack

• Identity Theft

Passive Side Channel

• Power analysis (DPA)

• Electromagnetic analysis

Open Port

• JTAG

• UART

• Default password
Day

7
Day

1
Day
30+

31

Day
3

Stage 3Stage 1 Stage 2

Ensure Device has NO Open Access

NVM (firmware)

• Extract

• Modify

• Re-flash

NVM
Embedded

Processor
Cloud

Bus

• Monitor

• Man-in-the-middle

Active Side Channel

• Glitch attack

• Decapping
Network Attack

• Protocol attack

• Attack bad implementation

• Code injection attack

Passive Side Channel

• Power analysis (DPA)

• Electromagnetic analysis

Open Port

• JTAG

• UART

• Default password
Day

7
Day

1
Day
30+

32

Use PSoCTM Security Features – Debug Access Port - DAP

There are three different access port restriction settings:

• Secure access restrictions (SAR)

• Normal access restrictions (NAR)

• Dead access restrictions (DAR)

The SAR and DAR are stored in the eFuse which cannot be erased

once set. These restrictions must be set before entering the SECURE

lifecycle stage. Once in SECURE lifecycle stage, the SAR and DAR

cannot be altered.

The NARs are stored in the SFlash and are protected only by the

system call firmware which ALWAYS runs with a protection context

equal 0. The system call functions allow you to increase the NAR

security, but not to reduce it.

33

OPTIGATM Trust M – Security Monitor

Security event counter (SEC)

• Prevents brute force attack. For example, if OPTIGA™ Trust M

performs 1 decryption (secret key use), 1 signature generation

(private key use), 1 key derivation within tmax, then SEC =

(1+1+1) = 3. After tmax elapses, SEC = (3-1) = 2

• Throttling down profile

OPTIGA™ Trust M throttles its performance as a guard against

planned attacks like side channel analysis involving power.

OPTIGA™ Trust M starts slowing down the operations by inducing

a specific amount of delay.

…

Link for more infromation: OPTIGA™ Trust M: Security monitor – KBA235349

https://community.infineon.com/t5/Knowledge-Base-Articles/OPTIGA-Trust-M-Security-monitor-KBA235349/ta-p/359081?profile.language=en

34

Day
3

Stage 3Stage 1 Stage 2

Firmware Access MUST Be Protected

NVM (firmware)

• Extract

• Modify

• Re-flash

NVM
Embedded

Processor
Cloud

Bus

• Monitor

• Man-in-the-middle

Active Side Channel

• Glitch attack

• Decapping
Network Attack

• Protocol attack

• Attack bad implementation

• Code injection attack

Passive Side Channel

• Power analysis (DPA)

• Electromagnetic analysis

Open Port

• JTAG

• UART

• Default password
Day

7
Day

1
Day
30+

35

Use PSoCTM Secure Boot to Only Run Genuine Software

Secure Boot must be used to ensure that only
manufacturer firmware can run on the MCU.

To verify the user application, a digital
signature is created and appended to the end
of the code during build time.

During the Boot Sequence, first the TOC1&2
data (Trim Values, Unique ID, Flash Boot
Code, Public Key (OEM)) are being validated
using digest stored in eFuse.

In second step User App Code is being
valaidated using SFlash data.

 HA H Calculation
 ecs in OM

 O MA

 w alidate ata pointed to in TOC
 Trim alues
 ni ue
 lash oot Code
 Public ey O M

 ecure
HA H alid

 alidate igital ignature,

 A
 ecs in lash

 alid
 ignature

Public
 O M

 ser App
 igital ignature

 ser App Code

 ump to lash oot

CM ser App
 ser lash

 alid

 nvalid

 nvalid

 alid

 ata
 ata

 oot e uence CM

 ote
 n C mode, the entries of both
TOC and TOC will be included in
the HA H calculation

 ote
The O M generates or edits the
following fields
 C HA H
 Application w igital ignature
 Public O M
 TOC Table Of Contents

Configure APs

 ecure HA H e use
 sed in ecure mode boot

 ata

 C

 C with ebug

 O MA

 ump to lash oot

CM comes out of reset and performs basic housekeeping tasks

 ote
 ser CM code
enables CM

 OM

 lash

 lash

e use

 ote
The colors of the bo es
indicate what type of
memory either the data or
e ecuting code resides

 AP Configuration
 O MA A
 C A
 C with ebug A

 n C mode AP is
configured based on the
 A , but P O drive mode
is left to O M

 ife

Cycle

 tage

https://www.trustedfirmware.org/projects/mcuboot/

36

Code Signing & Code verification

To verify the user application, a digital
signature is created and appended to the
end of the code during build time.

 A Code erification lash boot

 inary

Code

 mage

 irmware

Calculate

 igest

 HA

 ecrypt

 igital ignature

 A bit
 igest

 Calculated

Public ey

 bit

 igital

 ignature

 inary irmware

 ot ncrypted

Compare ecrypted igest

 ith Calculated igest

 o

 igests

Match

 nvalid

Application

 alid

Application

 igest

 ecrypted

 o

 es

Application

 undle

 igital

 ignature

CM Code

CM Code

App Header

The device bootup code “Flash boot” uses
RSA to verify first the user code.

37

Use Memory Encryption to Protect Firmware Stored Externally

When using external NVM to store the firmware, flash encryption is
recommended. This way physical readout of the external SPI flash
memory is not sufficient to recover most flash contents, thus protecting
firmware against unauthorized readout, reversing or modification.

The content consist of:

• Encrypted FW image

• Metadata:

• Version → Roll back prevention

• Image Hash → Image integrity

• Derivation Data → Binding metadata with Image & Confidentiality

• Known Good Platform Status → Update platform integrity
reference on Host MCU/Trust M as data object

• Signature – enrypted digest using public key of device

Metadata is „personalised“ preventing physical attack by changing the
external NVM between devices

Encrypted FW

Image

metadata

signature

External NVM

38

Day
3

Stage 3Stage 1 Stage 2

Bus Monitoring Recommendations

NVM (firmware)

• Extract

• Modify

• Re-flash

NVM
Embedded

Processor
Cloud

Bus

• Monitor

• Man-in-the-middle

Active Side Channel

• Glitch attack

• Decapping
Network Attack

• Protocol attack

• Attack bad implementation

• Code injection attack

Passive Side Channel

• Power analysis (DPA)

• Electromagnetic analysis

Open Port

• JTAG

• UART

• Default password
Day

7
Day

1
Day
30+

39

Embedded Processor

Bus Monitoring Recommendations

Use peripheral that supports bus encryption whenever it is possible.

If encryption at bus level is not possible, at least use encryption at application level.

Connectivity modules that include TLS stack in module firmware are at risk if data bus is not
encrypted; as protocol and application data is visible in clear on the bus and replay attack
can be performed.

Connectivity Module

SSL/TLS Security

TCP/IP Stack

Embedded Processor

Application

Connectivity Module

SSL/TLS Security

Application

Radio FW Radio FW

RecommendedNOT recommended

TCP/IP Stack

40

OPTIGA™ Shielded Connection – Prevent spying of the I2C bus

The OPTIGA™ Shielded Connection enables a protected (Integrity and Confidentiality) communication
between the OPTIGA™ and a corresponding Host platform. The pre-shared secret is established during
first boot/initialization sequence.

The session key is derived every time a shielded communication is established between the host and
OPTIGATM Trust M and therefore, unique on each startup or each session. This makes the symmetric
key used unique per session and enhances security, similar to TLS.

Host MCU

OPTIGA™
Trust M

Application

Crypto Library

OPTIGA™ Services Session Based

Encrypted Channel

Link for more infromation: OPTIGA™ Trust M: Shielded connection – KBA235350

https://community.infineon.com/t5/Knowledge-Base-Articles/OPTIGA-Trust-M-Shielded-connection-KBA235350/ta-p/354380?profile.language=en

41

Day
3

Stage 3Stage 1 Stage 2

Side Channel Attacks

NVM (firmware)

• Extract

• Modify

• Re-flash

NVM
Embedded

Processor
Cloud

Bus

• Monitor

• Man-in-the-middle

Active Side Channel

• Glitch attack

• Decapping
Network Attack

• Protocol attack

• Attack bad implementation

• Code injection attack

Passive Side Channel

• Power analysis (DPA)

• Electromagnetic analysis

Open Port

• JTAG

• UART

• Default password
Day

7
Day

1
Day
30+

42

Clock Glitch Detection (Espressif C3/S3)

The Clock Glitch Detection module monitors input clock signals from XTAL_CLK. If it detects a
glitch, namely a clock pulse (a or b in the figure below) with a width shorter than 3 ns, input clock
signals from XTAL_CLK are blocked.

Once detecting a glitch on XTA C that affects the circuit’s normal operation, the Clock litch
Detection module triggers a system reset (including RTC) if RTC_CNTL_GLITCH_RST_EN bit
is enabled. By default, this bit is set to enable a reset.

43

Side Channel Attacks

Most general purpose MCU on the market are still vulnerable to side channel attacks
such as decapping or Differential Power Analysis (DPA).

Decapping a chipset is not very expensive and definitely in reach for hackers.

Device cloning is a real risk.

• Provided enough time, decapping technique has a close to 100% success rate to extract secret keys and
device firmware.

• Copying the device BoM is no big challenge.

44

Use SE against Side Channel Attacks

Advanced Multi-Level Hardware Security

• Active shield over entire chip

• All memories internally encrypted

• Information independent execution

• Internal state consistency checking

• Power supply tamper protection

• Temperature lockouts

• Internal clock generation

• Secure test methods

• No die features can be identified

• No package or die identification

Designed to defend against a multitude of attacks
• Legacy architecture from Smart Card history

Standard MCU, logic & memory

Active Shield

45

OPTIGATM Trust M – Crypto performance

• Supports Elliptic Curve Cryptography authentication (ECDSA) and key exchange (ECDH)

• Encryption (AES) is still handled by the host MCU (data bus is encrypted)

• Protects the device’s identity key

• Accelerates verification and key agreement

55 65 85 60

3123

1997

5057

3117

0

1000

2000

3000

4000

5000

6000

ECC256 Key Generation ECDSA Sign ECDSA Verify ECDHE Key Agreement

OPTIGATM Trust M vs. Cortex-M0+ (SW)
Benchmark

OPTIGA Trust M Cortex M0+ @ 48MHz

m
ill

is
e

c
o

n
d

s

46

Use SE against Side Channel Attacks – OPTIGATM Trust M

Tamper-Hardened Hardware BoundaryActive Shield:

Attackers

cannot see

what’s inside

Encrypted

&

Protected

Required for

every crypto

protocol

Isolates

attack to a

single

device

Tracks number of

authentications

Intrusion

detection

Various

anti-hack

techniques

employed

47

Day
3

Stage 3Stage 1 Stage 2

Network and Software Attacks

NVM (firmware)

• Extract

• Modify

• Re-flash

NVM
Embedded

Processor
Cloud

Bus

• Monitor

• Man-in-the-middle

Active Side Channel

• Glitch attack

• Decapping
Network Attack

• Protocol attack

• Attack bad implementation

• Code injection attack

Passive Side Channel

• Power analysis (DPA)

• Electromagnetic analysis

Open Port

• JTAG

• UART

• Default password
Day

7
Day

1
Day
30+

48

Use Canary to Detect Code Injection Attacks (GCC)

To counter such exploit, compilers including the gcc started to add ‘hardening’ options to detect these
e ploits n that approach, the compiler is placing a ‘canary’ guard into each instrumented function
stack frame.

-fstack-protector: Emit extra code to check for buffer overflow, such as stack smashing attack.
This is done by adding a guard variable to functions with vulnerable objects. This includes functions
that call alloca, and functions with buffers larger than 8 bytes. The guards are initialized when a
function is entered and then checked when the function exits. If a guard check fails, an error
message is printed and the program exits.

-fstack-protector-all: Like -fstack-protector except that all functions are protected.

The compiler then generates the code verification logic:

• At function entry, it stores the __stack_chk_guard value into the stack frame.

• At function exit, the guard value on the stack is compared against the value in
__stack_chk_guard. If canary is overwritten, handler __stack_chk_fail is called.

1
2
3
4
5
6
7

unsigned long __stack_chk_guard = 0xDEADBEEF;

void __stack_chk_fail(void) { /* will be called if guard/canary gets corrupted */
/* Handle error, print error message, stop the target, ... */
DisableInterrupts();
__asm volatile("bkpt #0"); /* break target */

}

https://mcuoneclipse.com/2019/09/28/stack-canaries-with-gcc-checking-for-stack-overflow-at-runtime/

https://mcuoneclipse.com/2019/09/28/stack-canaries-with-gcc-checking-for-stack-overflow-at-runtime/

49

Best practices to Prevent Code Injection Attacks - Validate Input

One of the most important steps to prevent code injection attacks is to validate the input that your
application receives from users or other sources. Validation means checking that the input
conforms to the expected format, type, length, and range, and rejecting any input that does
not. You can use built-in or custom validation functions, regular expressions, or whitelists to filter
out any unwanted or suspicious input. Validation should be performed on both the client-side and
the server-side, as client-side validation can be bypassed by malicious users.

#define MAX_INPUT_BUFFER 128
uint8_t input_bufer[MAX_INPUT_BUFFER + 1];

while(1u){
input_bufer[current_byte] = input_data;
…
if(current_byte < MAX_INPUT_BUFFER) current_byte++;

}

53

Secure (OTA) Update using OPTIGATM Trust M

SoC / MCU FW

• The SoC / MCU FW gets distributed using a multicasting model.

• The FW Update Data Set consists of update metadata and the
update image.

• The Integrity of the update metadata roots back to the FW Update
Root CA (Trust Anchor). The regarded public key certificate hosted
by the OPTIGA™ Trust M.

• The update metadata consists among others of

• Version → Roll back prevention

• Image Hash → Image integrity

• Derivation Data → Binding metadata with Image & Confidentiality

• Known Good Platform Status → Update platform integrity
reference on Host MCU/Trust M as data object

• The derived image decryption key roots back to a shared secret
known by all OPTIGA™ Trust M of a given Platform Vendor domain.

Encrypted

FW Image

metadata

OPTIGATM

FW Trust Anchor

Pre-shared

Master Secret

signature

Host MCU

Verify metadata digest vs

signature using FW Trust

Anchor

Derive FW Decryption Key

using Master secret and

derivation data

Decrypted

FW Image

S
h
ie

ld
e
d
 C

o
n
n
e
c
ti
o
n

54

	Slide 1: EBV & Infineon Security Deep Dive – IoT Threats & Countermeasures
	Slide 2: IoT Security Threats & Countermeasures
	Slide 3: Security Consultants & Hackers Methodology
	Slide 4: Security Consultants & Hackers Methodology
	Slide 5: Finding Open Doors into the IoT Device
	Slide 6: Stage 1: Brute Force Attack to Get Device Access 1/3
	Slide 7: Stage 1: Trying to Access JTAG 2/3
	Slide 8: Stage 1: Trying to Access JTAG 3/3
	Slide 9: Understanding the Application Communication Flow
	Slide 10: Stage 2: Analyze Network Communications 1/5
	Slide 11: Stage 2: Analyze Network Communications 2/5
	Slide 12: Stage 2: Analyze Network Communications 3/5
	Slide 13: Stage 2: Analyze Android Mobile App 4/5
	Slide 14: Stage 2: Probe Data Bus and Replay Attack 5/5
	Slide 15: Disrupting the Hardware and Reversing the Software
	Slide 16: Stage 3: Timing Attack to Find Credentials with Power Analysis 1/9
	Slide 17: Stage 3: Glitch Injection to Bypass Instructions in Core Pipeline 2/9
	Slide 18: Stage 3: Dumping External Flash Memory 3/9
	Slide 19: Stage 3: Dumping Internal Flash Memory (Chip Decapsulation) 4/9
	Slide 20: Stage 3: Disassemble the Software and Reverse Engineering 5/9
	Slide 21: Stage 3: Understand Software Flow & Extract Embedded Keys 6/9
	Slide 22: Stage 3: Bypassing Security Verification (Secure Boot) 7/9
	Slide 23: Stage 3: Code Injection for Potential Large-Scale Attacks 8/9
	Slide 24: Stage 3: Extract AES Keys from Memory Coredump 9/9
	Slide 25: IoT Devices Need to Address Multiple Threats!
	Slide 26: Security Countermeasures
	Slide 27: OPTIGA™ Family – Embedded Security Solutions
	Slide 28: OPTIGA™ Trust M - SLS 32AIA010MH/S/K/L
	Slide 29: OPTIGA™ Security Functions – Use Cases
	Slide 30: IoT Devices Need to Address Multiple Threats!
	Slide 31: Ensure Device has NO Open Access
	Slide 32: Use PSoCTM Security Features – Debug Access Port - DAP
	Slide 33: OPTIGATM Trust M – Security Monitor
	Slide 34: Firmware Access MUST Be Protected
	Slide 35: Use PSoCTM Secure Boot to Only Run Genuine Software
	Slide 36: Code Signing & Code verification
	Slide 37: Use Memory Encryption to Protect Firmware Stored Externally
	Slide 38: Bus Monitoring Recommendations
	Slide 39: Bus Monitoring Recommendations
	Slide 40: OPTIGA™ Shielded Connection – Prevent spying of the I2C bus
	Slide 41: Side Channel Attacks
	Slide 42: Clock Glitch Detection (Espressif C3/S3)
	Slide 43: Side Channel Attacks
	Slide 44: Use SE against Side Channel Attacks
	Slide 45: OPTIGATM Trust M – Crypto performance
	Slide 46: Use SE against Side Channel Attacks – OPTIGATM Trust M
	Slide 47: Network and Software Attacks
	Slide 48: Use Canary to Detect Code Injection Attacks (GCC)
	Slide 49: Best practices to Prevent Code Injection Attacks - Validate Input
	Slide 53: Secure (OTA) Update using OPTIGATM Trust M
	Slide 54

